POC2016 - Flip Feng Shui: Hammering a Needle in the Software Stack

Kaveh Razavi Ben Gras Erik Bosman
Bart Preneel Cristiano Giuffrida Herbert Bos

November 10, 2016
Who am I

- Security researcher in academia
- VU University in Amsterdam, systems security research group (vusec)
- Shown left: Kaveh and Ben after submitting this work to Usenix Security
Who are we

- Shown left: The rest of the vusec group at the VU
- We publish offensive and defensive systems security research at security conferences
- Also software reliability research
Teaser

- OpenSSH compromise
- apt-get compromise by GPG signature forgery
- No software bug
- Weak assumptions
- Demo!
Contribution

Flip Feng Shui is a novel exploitation structure

- Hardware glitch

- Memory massaging primitive

Makes the glitch

- Easy to target precisely

- Reliable

We demonstrate FFS = Rowhammer + Memory Deduplication
Outline

Flip Feng Shui At Work
Outline

Flip Feng Shui At Work

Flip Feng Shui Mechanics
Outline

Flip Feng Shui At Work

Flip Feng Shui Mechanics

OpenSSH Attack
Outline

Flip Feng Shui At Work

Flip Feng Shui Mechanics

OpenSSH Attack

Privilege Escalation Bitflips
Outline

Flip Feng Shui At Work

Flip Feng Shui Mechanics

OpenSSH Attack

Privilege Escalation Bitflips

GPG/APT Updates Attack Demo
Outline

Flip Feng Shui At Work

Flip Feng Shui Mechanics

OpenSSH Attack

Privilege Escalation Bitflips

GPG/APT Updates Attack Demo

Notification, Conclusion & Further Resources
Section 1

Flip Feng Shui At Work
Flip Feng Shui

- Flip one bit per page in a co-hosted victim VM

- Whenever you know its contents

- Organised bitflip

- DRAM glitch

- Breaks CPU virtualization isolation
Section 2

Flip Feng Shui Mechanics
Flip Feng Shui Mechanics

- Co-hosted VMs
- Memory deduplication
- Rowhammer
- RSA
Memory deduplication

Virtualization Host

Victim

Attacker

Backing memory
Rowhammer

- Causes charge to leak in DRAM
- DRAM row activations cause flips

Row Buffer
Rowhammer

- Causes charge to leak in DRAM
- DRAM row activations cause flips
Rowhammer

- Causes charge to leak in DRAM
- DRAM row activations cause flips

![Diagram of Rowhammer effect]
Rowhammer

- Causes charge to leak in DRAM
- DRAM row activations cause flips

![Diagram of Rowhammer](image)
Rowhammer

- Causes charge to leak in DRAM
- DRAM row activations cause flips
Rowhammer

- Causes charge to leak in DRAM
- DRAM row activations cause flips
Rowhammer

- Causes charge to leak in DRAM
- DRAM row activations cause flips
Rowhammer

- Causes charge to leak in DRAM
- DRAM row activations cause flips
Rowhammer

- Causes charge to leak in DRAM
- DRAM row activations cause flips
Memory deduplication + Rowhammer = FFS
Memory deduplication + Rowhammer = FFS
Memory deduplication \(+ \) Rowhammer = FFS
Memory deduplication + Rowhammer = FFS

- FFS breaks COW
RSA

- Public key cryptosystem
- Two keys: public and private
- Compute secret private from factorization
FFS - What now?
Break weakened RSA.
FFS - What now?

We can afford a short time cutoff.
Section 3

OpenSSH Attack
authorized_keys file

Looks like this:

```
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDX
y7MdVToVAvKB0/Xven/kqBzfrRZm+GITl6sB0u+Aa
3/UTC3x+eKjB2jf+48kTP7AvsdbSwg9Q5upN77xX
3mNGwwj1RUQpOPPc99XH09M84iCydE+9smYseySf
bJQnrov5Ricz2Z18Neuy5ZUH/Ldrf1NSwWoo5NZL
6tj0E9JvZurMPPk2EqEyH1tEFC60etJwEfaPq9k0
glmzFtBWLHR4dF1796JeVkFiWcmMaykAoN+JRF2n
MlayP1UxdWR0JwxZ2cJ9la/QLXvv8x0tsORGP9ZG
5BWq0cD781evuSS3i91BNg60s17mlxo6Mc3oUbew
/7ddV08WjdRBn7iQF9WN beng@mymachine
```

- RSA public key
- Attacker writes this to memory
- We need the private key
OpenSSH FFS attack

Virtualization Host

Victim

Attacker

Backing memory
OpenSSH FFS attack

Virtualization Host

Victim

Attacker

Backing memory
OpenSSH FFS attack

Virtualization Host

Victim

Attacker

Backing memory
OpenSSH FFS attack
OpenSSH Attack

CDF
Attack time (mins)
successful attacks

Could retry
Section 4

Privilege Escalation Bitflips
What else could we bitflip

- Victim VM kernel pagetable
- On-disk victim VM inode
- Machine code
Victim VM kernel pagetable

- Linux kernel pagetables are predictable: early boot
- Mimic a kernel pagetable
- And flip the S bit
- Then we can easily upgrade our local access
On-disk victim VM inode

- Base system binaries have low variation in inode content
- Mimic a page containing an inode
- Of a small binary owned by root
- And flip the suid bit
- Then we can also easily upgrade our local access
Original C code:

```c
int verify(char *pw)
{
    if(strcmp(pw, "Secret")) return 0;
    return 1;
}

int main(int argc, char *argv[])
{
    if(verify(argv[1])) { printf("OK!\n"); } else { printf("Fail!\n"); return 1; } return 0;
}
```
Original Behaviour

$./hello asdf
Fail!
$./hello Secret
OK!
Original Assembly

0x02f (01) 55 PUSH RBP
0x030 (03) 4889e5 MOV RBP, RSP
0x033 (04) 4883ec10 SUB RSP, 0x10
0x037 (04) 48897df8 MOV [RBP-0x8], RDI
0x03b (04) 488b45f8 MOV RAX, [RBP-0x8]
0x03f (05) bea4064000 MOV ESI, 0x4006a4
0x044 (03) 4889c7 MOV RDI, RAX
0x047 (05) e8cdfeffff CALL 0xffffffffffffffff19
0x04c (02) 85c0 TEST EAX, EAX
0x04e (02) 7407 JZ 0x57
0x050 (05) b800000000 MOV EAX, 0x0
0x055 (02) eb05 JMP 0x5c
0x057 (05) b801000000 MOV EAX, 0x1
0x05c (01) c9 LEAVE
0x05d (01) c3 RET
Mutated Assembly

0x02f (01) 55 PUSH RBP
0x030 (03) 4889e5 MOV RBP, RSP
0x033 (04) 4883e410 AND RSP, 0x10
0x037 (04) 48897df8 MOV [RBP-0x8], RDI
0x03b (04) 488b45f8 MOV RAX, [RBP-0x8]
0x03f (05) bea4064000 MOV ESI, 0x4006a4
0x044 (03) 4889c7 MOV RDI, RAX
0x047 (05) e8cdfeffff CALL 0xffffffffffffff19
0x04c (02) 85c0 TEST EAX, EAX
0x04e (02) 7407 JZ 0x57
0x050 (05) b800000000 MOV EAX, 0x0
0x055 (02) eb05 JMP 0x5c
0x057 (05) b801000000 MOV EAX, 0x1
0x05c (01) c9 LEAVE
0x05d (01) c3 RET
Mutated Assembly

0x02f (01) 55 PUSH RBP
0x030 (03) 4889e5 MOV RBP, RSP
0x033 (04) 4883e810 SUB RAX, 0x10
0x037 (04) 48897df8 MOV [RBP-0x8], RDI
0x03b (04) 488b45f8 MOV RAX, [RBP-0x8]
0x03f (05) bea4064000 MOV ESI, 0x4006a4
0x044 (03) 4889c7 MOV RDI, RAX
0x047 (05) e8cdfeffff CALL 0xfffffffffffffffff19
0x04c (02) 85c0 TEST EAX, EAX
0x04e (02) 7407 JZ 0x57
0x050 (05) b800000000 MOV EAX, 0x0
0x055 (02) eb05 JMP 0x5c
0x057 (05) b801000000 MOV EAX, 0x1
0x05c (01) c9 LEAVE
0x05d (01) c3 RET
Mutated Assembly

0x02f (01) 55 PUSH RBP
0x030 (03) 4889e5 MOV RBP, RSP
0x033 (04) 4883ee10 SUB RSI, 0x10
0x037 (04) 48897df8 MOV [RBP-0x8], RDI
0x03b (04) 488b45f8 MOV RAX, [RBP-0x8]
0x03f (05) bea4064000 MOV ESI, 0x4006a4
0x044 (03) 4889c7 MOV RDI, RAX
0x047 (05) e8cdfefffff CALL 0xffffffffffffffff19
0x04c (02) 85c0 TEST EAX, EAX
0x04e (02) 7407 JZ 0x57
0x050 (05) b800000000 MOV EAX, 0x0
0x055 (02) eb05 JMP 0x5c
0x057 (05) b801000000 MOV EAX, 0x1
0x05c (01) c9 LEAVE
0x05d (01) c3 RET
Mutated Assembly

0x02f (01) 55 PUSH RBP
0x030 (03) 4889e5 MOV RBP, RSP
0x033 (04) 4883ed10 SUB RBP, 0x10
0x037 (04) 48897df8 MOV [RBP-0x8], RDI
0x03b (04) 488b45f8 MOV RAX, [RBP-0x8]
0x03f (05) bea4064000 MOV ESI, 0x4006a4
0x044 (03) 4889c7 MOV RDI, RAX
0x047 (05) e8cdfefffff CALL 0xffffffffffffffff19
0x04c (02) 85c0 TEST EAX, EAX
0x04e (02) 7407 JZ 0x57
0x050 (05) b800000000 MOV EAX, 0x0
0x055 (02) eb05 JMP 0x5c
0x057 (05) b801000000 MOV EAX, 0x1
0x05c (01) c9 LEAVE
0x05d (01) c3 RET
Mutated Assembly

0x02f (01) 55 PUSH RBP
0x030 (03) 4889e5 MOV RBP, RSP
0x033 (04) 4883ec90 SUB RSP, −0x70
0x037 (04) 48897df8 MOV [RBP−0x8], RDI
0x03b (04) 488b45f8 MOV RAX, [RBP−0x8]
0x03f (05) bea4064000 MOV ESI, 0x4006a4
0x044 (03) 4889c7 MOV RDI, RAX
0x047 (05) e8cdfeffff CALL 0xfffffffffffffff19
0x04c (02) 85c0 TEST EAX, EAX
0x04e (02) 7407 JZ 0x57
0x050 (05) b800000000 MOV EAX, 0x0
0x055 (02) eb05 JMP 0x5c
0x057 (05) b801000000 MOV EAX, 0x1
0x05c (01) c9 LEAVE
0x05d (01) c3 RET
Interesting case

<table>
<thead>
<tr>
<th>Address</th>
<th>Type</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x02f</td>
<td>55</td>
<td>PUSH RBP</td>
<td></td>
</tr>
<tr>
<td>0x030</td>
<td>4889e5</td>
<td>MOV RBP, RSP</td>
<td></td>
</tr>
<tr>
<td>0x033</td>
<td>4883ec10</td>
<td>SUB RSP, 0x10</td>
<td></td>
</tr>
<tr>
<td>0x037</td>
<td>48897df8</td>
<td>MOV [RBP-0x8], RDI</td>
<td></td>
</tr>
<tr>
<td>0x03b</td>
<td>488b45f8</td>
<td>MOV RAX, [RBP-0x8]</td>
<td></td>
</tr>
<tr>
<td>0x03f</td>
<td>bea4064000</td>
<td>MOV ESI, 0x4006a4</td>
<td></td>
</tr>
<tr>
<td>0x044</td>
<td>4889c7</td>
<td>MOV RDI, RAX</td>
<td></td>
</tr>
<tr>
<td>0x047</td>
<td>e8cdfefff</td>
<td>CALL 0xfffffffffffffffffffff19</td>
<td></td>
</tr>
<tr>
<td>0x04c</td>
<td>85c0</td>
<td>TEST EAX, EAX</td>
<td></td>
</tr>
<tr>
<td>0x04e</td>
<td>7507</td>
<td>JNZ 0x57</td>
<td></td>
</tr>
<tr>
<td>0x050</td>
<td>b800000000</td>
<td>MOV EAX, 0x0</td>
<td></td>
</tr>
<tr>
<td>0x055</td>
<td>eb05</td>
<td>JMP 0x5c</td>
<td></td>
</tr>
<tr>
<td>0x057</td>
<td>b801000000</td>
<td>MOV EAX, 0x1</td>
<td></td>
</tr>
<tr>
<td>0x05c</td>
<td>c9</td>
<td>LEAVE</td>
<td></td>
</tr>
<tr>
<td>0x05d</td>
<td>c3</td>
<td>RET</td>
<td></td>
</tr>
</tbody>
</table>
New behaviour

$./out/out11567.bin Secret
Fail!
$./out/out11567.bin asdf
OK!
Section 5

GPG/APT Updates Attack Demo
GPG/APT Updates

- With FFS we flip /etc/apt/sources.list
- With FFS we flip /etc/apt/trusted.gpg
- Use computed private key
- Long term RSA Ubuntu signing keys
Section 6

Notification, Conclusion & Further Resources
Notification

- Notified: Red Hat, Oracle, Xen, VMware, Debian, Ubuntu, OpenSSH, GnuPG, some hosting companies

- Thank you NCSC

GnuPG commit

gpgv: Tweak default options for extra security.

author NIIBE Yutaka <gniibe@fsij.org>
Fri, 8 Jul 2016 20:20:02 -0500 (10:20 +0900)

committer NIIBE Yutaka <gniibe@fsij.org>
Fri, 8 Jul 2016 20:20:02 -0500 (10:20 +0900)

commit e32c575e0f3704e7563048ee6a6d26844bdfc494b
Conclusion

- Flip Feng Shui breaks isolation
- Co-hosting VMs is risky
- Disable memory dedup
- Project page
 https://www.vusec.net/projects/flip-feng-shui
- Want to join - PhD, postdoc, bachelor, master?
 https://www.vusec.net/join/